מאיר בר זוהר
ישראל
פרילנסר
תחומי התמחות
מרצים ומדריכים
350 ₪
לשעה
מרצים, מדריכי Machine Learning
הרצאתי על נושאי Machine learning בעזרת מודלים סטטייסטים
הנדסה
350 ₪
לשעה
הנדסת חשמל
מנחה סטודנטים לתארים גבוהים כמו Msc, ו Phd בפקולטה לחשמל בטכניון
טכנולוגיה
350 ₪
לשעה
AI, בינה מלאכותית
:Algorithms development for the following subjects
Automatic 3D and 2D Object Recognition
Small and large target tracking, for static and dynamic system
Expert systems techniques applications
Automatic finding of main roads in aerial images
Automatic 3D and 2D Object Recognition
Small and large target tracking, for static and dynamic system
Expert systems techniques applications
Automatic finding of main roads in aerial images
Machine Learning
:Algorithms development for the following subjects
Automatic 3D and 2D Object Recognition
Small and large target tracking, for static and dynamic system
Expert systems techniques applications
Automatic finding of main roads in aerial images
Automatic 3D and 2D Object Recognition
Small and large target tracking, for static and dynamic system
Expert systems techniques applications
Automatic finding of main roads in aerial images
עיבוד תמונה
Noise reduction in color images
Color image processing
Compression and enhancement techniques for video
Digital signal processing adaptive filters
Noise reduction in color images
Color image processing
Compression and enhancement techniques for video
Digital signal processing adaptive filters
ראייה ממוחשבת
:Algorithms development for the following subjects
3D reconstruction from stereo images
3D and 2D Object Recognition
Small and large target tracking, for static and dynamic system
Rigid 2D/3D Registration
Noise reduction in color images
Expert systems techniques applications
Color image processing
Compression and enhancement techniques for video
3D reconstruction from stereo images
3D and 2D Object Recognition
Small and large target tracking, for static and dynamic system
Rigid 2D/3D Registration
Noise reduction in color images
Expert systems techniques applications
Color image processing
Compression and enhancement techniques for video
Deep Learning
Deep learning CNN approach that improves both color rendition
and image sharpness
by translating ordinary photos into DSLR-quality
.images
Residual Learning of
Deep CNN for Image Denoising
and image sharpness
by translating ordinary photos into DSLR-quality
.images
Residual Learning of
Deep CNN for Image Denoising